

Holland Documentation

Holland is an open source Python package for running genetic algorithms. Holland has been designed to allow arbitrary user-defined genome encodings and fitness functions.

Holland is modular enough to allow users to pick and choose submodules to meet specific optimization.

	Basic Usage
	First example

	Intermediate Example: TSP

	Holland Reference
	Evolution

	Library

	Storage

	Utils

	Configuration
	Fitness Function

	Genome Parameters

	Crossover Functions

	Mutation Functions

	Selection Strategy

	Generation Parameters

	Fitness Storage Options

	Genome Storage Options

	Contributing
	Reporting Bugs

	Contribution Guide

Indices and tables

	Index

	Search Page

Basic Usage

	First example

	Intermediate Example: TSP

First example

Getting started with Holland is easy. Simply define your genome encoding and fitness function to get started

from holland import evolve
from math import cos, pi

specify hyper-parameters for genomes
genome_parameters = {
 "gene1": {"type": "float", "min": -pi, "max": pi},
 "gene2": {"type": "float", "min": -pi, "max": pi},
}

define a fitness function
def my_fitness_function(individual):
 return cos(inidividual.gene1) * cos(individual.gene2)

evolve!
my_population = evolve(
 genome_parameters,
 fitness_function=my_fitness_function,
 show_fitness_plot=True,
 num_generations=100,
)

Intermediate Example: TSP

from holland import evolve
from math import sqrt

list of cities and positions
cities = {"AZ": (1, 2), "CA": (3, 4), "NM": (5, 6), "TX": (7, 8)}

specify hyper-parameters for genomes
in this case there is only a single gene
genome_parameters = {
 "path": {"type": "[string]", "possible_values": cities.keys(), "mutation_function": "swap"}
}

def distance(p1, p2):
 dx = p1[0] - p2[0]
 dy = p1[1] - p2[1]
 return sqrt(dx * dx + dy * dy)

define a fitness function
a pythonic way to find the length of a round trip
def sum_of_distances(individual):
 cities = [position[city] for city in individual["path"]]
 return sum(
 [distance(city_1, city_2) for (city_1, city_2) in zip(cities, cities[1:] + [cities[0]])]
)

evolve!
my_population = evolve(
 genome_parameters,
 fitness_function=my_fitness_function,
 anneal_mutation_rate=True,
 show_fitness_plot=True,
 num_generations=100,
)

Holland Reference

This page provides the core documentation reference for Holland.

	Evolution

	evolution

	evaluation

	breeding

	selection

	crossover

	mutation

	Library

	fitness weighting functions

	crossover functions

	mutation functions

	Storage

	storage manager

	fitness

	genomes and fitnesses

	utils

	Utils

	utility functions

Evolution

evolution

	
class holland.evolution.Evolver(fitness_function, genome_params, selection_strategy, should_maximize_fitness=True)

	Handles evolution for a population

	Parameters

	
	fitness_function (function) – the fitness function used to evaluate individuals; see Fitness Function

	genome_params (dict) – a dictionary specifying genome parameters; see Genome Parameters

	selection_strategy (dict) – a dictionary specifying selection parameters; see Selection Strategy

	should_maximize_fitness (bool) – whether fitness should be maximized or minimized

	
evolve(generation_params={}, initial_population=None, stop_conditions={'n_generations': 100, 'target_fitness': inf}, storage_options={}, logging_options={'format': '%(message)s', 'level': 20})

	The heart of Holland.

	Parameters

	
	generation_params (dict) – a dictionary specifying how to create each generation; see Generation Parameters

	initial_population (list) – an initial population

	stop_conditions (dict) – conditions for stopping execution; will stop if any of the conditions is met; see Stop Conditions below

	storage_options (dict) – configuration options for storing fitness and genomes (should contain keys "fitness" and "genomes"); see Fitness Storage Options and Genome Storage Options

	logging_options (dict) – options for logging passed to logging.basicConfig [https://docs.python.org/3/library/logging.html#logging.basicConfig] as kwargs

	Stop Conditions

	
	n_generations (int) – the number of generations to run evolution over

	target_fitness (int) – the target fitness score, will stop once the fittest individual reaches this score

	Returns

	
	a list of fitness scores and genomes [(fitness, genome), ...] (fitness results); or

	a tuple of fitness results (previous bullet) and list of historical fitness statistics (fitness_results, fitness_history), if storage_options["fitness"] has 'should_record_fitness': True and 'format': 'memory'

	Raises

	
	ValueError – if generation_params["n_random"] < 0 or generation_params["n_elite"] < 0

	ValueError – if population_size < 1

	ValueError – if n_generations < 1

Todo

If an initial population is given but does not match the given genome parameters, some kind of error should be raised

Todo

If an initial population is given and some genomes are missing parameters, a warning is given unless a flag is set to fill those values randomly

	Dependencies:

	
	generate_random_genomes()

	evaluate_fitness()

	generate_next_generation()

	update_storage()

	react_to_interruption()

	Example:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from holland import evolve
from math import cos, pi

specify hyper-parameters for genomes
genome_parameters = {
 "gene1": {"type": "float", "min": -pi, "max": pi},
 "gene2": {"type": "float", "min": -pi, "max": pi},
}

define a fitness function
def my_fitness_function(individual):
 return cos(inidividual.gene1) * cos(individual.gene2)

evolve!
my_population = evolve(
 genome_parameters,
 fitness_function=my_fitness_function,
 show_fitness_plot=True,
 num_generations=100,
)

evaluation

	
class holland.evolution.Evaluator(fitness_function, ascending=True)

	Handles evaluation of genomes

	Parameters

	
	fitness_function (func) – a function for evaluating the fitness of each genome; see Fitness Function

	ascending (bool) – whether or not to sort results in ascending order of fitness

	
evaluate_fitness(gene_pool)

	Evaluates the fitness of a population by applying a fitness function to each genome in the population

	Parameters

	gene_pool (list) – a population of genomes to evaluate

	Returns

	a sorted list of tuples of the form (score, genome).

breeding

	
class holland.evolution.PopulationGenerator(genome_params, selection_strategy, generation_params={})

	Handles generating populations

	Parameters

	
	genome_params (dict) – a dictionary specifying genome parameters; see Genome Parameters

	selection_strategy (dict) – a dictionary specifying selection parameters; see Selection Strategy

	generation_params (dict) – a dictionary specifying how to create the next generation; see Generation Parameters

	Raises

	
	ValueError – if n_random < 0 or n_elite < 0

	ValueError – if n_random + n_elite > population_size

	
generate_next_generation(fitness_results)

	Generates the next generation

	Parameters

	fitness_results (list) – a sorted list of tuples containing a fitness score in the first position and a genome in the second (returned by evaluate_fitness())

	Returns

	a list of genomes

Note

For the sake of efficiency, this method expects fitness_results to be sorted in order to properly select genomes on the basis of fitness. evaluate_fitness() returns sorted results.

Todo

Write an example for usage

	Raises

	ValueError – if n_random + n_elite > population_size

	Dependencies:

	
	breed_next_generation()

	generate_random_genomes()

	
breed_next_generation(fitness_results, n_genomes)

	Generates a given number of genomes by breeding, through crossover and mutation, existing genomes

	Parameters

	
	fitness_results (list) – a sorted list of tuples containing a fitness score in the first position and a genome in the second (returned by evaluate_fitness())

	n_genomes (int) – the number of genomes to produce

	Returns

	a list of bred genomes

	Raises

	ValueError – if n_genomes < 0

Note

For the sake of efficiency, this method expects fitness_results to be sorted in order to properly select genomes on the basis of fitness. evaluate_fitness() returns sorted results.

Todo

Write an example for usage

	Dependencies:

	
	select_breeding_pool()

	select_parents()

	cross_genomes()

	mutate_genome()

	
generate_random_genomes(n_genomes)

	Generates a given number of genomes based on genome parameters

	Parameters

	n_genomes (int) – the number of genomes to produce

	Returns

	a list of randomly generated genomes

	Raises

	ValueError – if n_genomes < 0

Todo

Write an example for usage

	Dependencies:

	
	bound_value()

selection

	
class holland.evolution.Selector(selection_strategy={})

	Handles selection of genomes for breeding

	Parameters

	selection_strategy – parameters for selecting a breeding pool and sets of parents; see Selection Strategy

	Raises

	
	ValueError – if any of top, mid, bottom, or random is negative

	ValueError – if n_parents < 1

	
select_breeding_pool(fitness_results)

	Selects a pool of genomes from a population from which to draw parents for breeding the next generation

	Parameters

	fitness_results (list) – a sorted list of tuples containing a fitness score in the first position and a genome in the second (returned by evaluate_fitness())

	Returns

	a list of tuples of the form (score, genome) (same format as fitness_results)

	Raises

	ValueError – if len(fitness_results) < self.top + self.mid + self.bottom + self.random

Note

For the sake of efficiency, this method expects fitness_results to be sorted in order to properly select genomes on the basis of fitness. evaluate_fitness() returns sorted results.

	Dependencies:

	
	select_from()

	
select_parents(fitness_results)

	Selects parents from the given fitness_results to use for breeding a new genome

	Parameters

	fitness_results (list) – a (not necessarily sorted list of tuples containing a fitness score in the first position and a genome in the second (returned by evaluate_fitness())

	Returns

	a list of genomes (of length self.n_parents)

	Dependencies:

	
	select_random()

crossover

	
class holland.evolution.Crosser(genome_params)

	Handles genetic crossover

	Parameters

	genome_params (dict) – a dictionary specifying genome parameters, specifcally crossover_function is relevant; see Genome Parameters

	
cross_genomes(parent_genomes)

	Produces a new genome by applying crossover to multiple parent genomes

	Parameters

	parent_genomes – a list of parent genomes

	Returns

	a single genome

mutation

	
class holland.evolution.Mutator(genome_params)

	Handles genetic mutation

	Parameters

	genome_params (dict) – a dictionary specifying genome parameters; see Genome Parameters

	
mutate_genome(genome)

	Mutates a genome

	Parameters

	genome (dict) – the genome to mutate

	Returns

	a mutated genome

	Dependencies:

	
	mutate_gene()

	
mutate_gene(gene, gene_params)

	Mutates a single gene

	Parameters

	
	gene (a valid gene type) – the gene to mutate

	gene_params (dict) – parameters for a single gene; see Genome Parameters

	Returns

	a mutated gene

	Dependencies:

	
	probabilistically_apply_mutation()

	
probabilistically_apply_mutation(target, gene_params)

	Either applies a mutation function to a target (gene or value of a gene) or does not, probabilistically according to the mutation_rate

	Parameters

	
	target (a valid, non-list, gene type) – the target to which to apply the mutation

	gene_params (dict) – parameters for a single gene; see Genome Parameters

	Returns

	either the mutated target or the original target

	Dependencies:

	
	bound_value()

Library

fitness weighting functions

Fitness weighting functions are used by select_parents() to weight fitness scores and generate probabilities for selecting a genome to be a parent of a genome in the next generation. The following functions return stock weighting functions, some with configurable parameters. See Selection Strategy for general information.

General Example:

from holland.utils import select_random

weighting_function = get_some_weighting_function()

breeding_pool = select_breeding_pool(fitness_results, **selection_strategy.get("pool"))
split fitness and genomes into separate lists
fitness_scores, genomes = zip(*breeding_pool)

weighted_scores = [weighting_function(fitness) for fitness in fitness_scores]
weighted_total = sum(weighted_scores)
selection_probabilities = [weighted_score / weighted_total for weighted_score in weighted_scores]

parents = select_random(genomes, probabilities=selection_probabilities, n=2)

	
holland.library.fitness_weighting_functions.get_uniform_weighting_function()

	Returns a function that returns a constant, regardless of input; see Selection Strategy

	Returns

	a function that returns a constant

	
holland.library.fitness_weighting_functions.get_linear_weighting_function(slope=1)

	Returns a function that weights its input linearly according to slope; see Selection Strategy

	Parameters

	slope (int/float) – the multiplier for input

	Returns

	a linear function

	
holland.library.fitness_weighting_functions.get_polynomial_weighting_function(power=2)

	Returns a function that weights its input by raising the input to the power specified; see Selection Strategy

	Parameters

	power (int/float) – the power to raise the input to

	Returns

	a polynomial function

	
holland.library.fitness_weighting_functions.get_exponential_weighting_function(base=2.718281828459045)

	Returns a function that weights its input by raising the base to the power of the input; see Selection Strategy

	Parameters

	base (int/float) – the base to raise to the power of the input

	Returns

	a exponential function

	
holland.library.fitness_weighting_functions.get_logarithmic_weighting_function(base=2.718281828459045)

	Returns a function that weights its input getting the logarithm (with specified base) of the input; see Selection Strategy

	Parameters

	base (int/float) – the base to calculate the logarithm of the input for

	Returns

	a logarithmic function

Note

This fitness weighting function will throw an error for fitness scores less than or equal to 0.

	
holland.library.fitness_weighting_functions.get_reciprocal_weighting_function()

	Returns a function that weights its input by raising the input to the -1 power; see Selection Strategy

The reciprocal weighting function is useful in cases where fitness should be minimized as the function results in granting higher selection probabilities to individuals with lower scores

	Returns

	a function that returns 1/input

Note

This fitness weighting function will throw an error for fitness scores equal to 0.

crossover functions

Crossover functions are used by cross_genomes() to perform crossover. The following functions return stock crossover functions, some with configurable parameters. See Crossover Functions for general information.

General Example:

crossover = get_some_crossover_function()

parent_genomes = select_parents(fitness_results)
gene_names = parent_genomes[0].keys()

offspring = {}
for gene_name in gene_names:
 parent_genes = [pg[gene_name] for pg in parent_genomes]
 offspring[gene_name] = crossover(parent_genes)

	
holland.library.crossover_functions.get_uniform_crossover_function()

	Returns a function that applies uniform crossover (each gene value is chosen at random from the parent genes); see Crossover Functions

	Valid For

	any gene type

	Returns

	a function that accepts a list of parent genes and applies uniform crossover to them and returns a new gene

	
holland.library.crossover_functions.get_point_crossover_function(n_crossover_points=1)

	Returns a function that applies point crossover (take gene values from one parent gene at a time until reaching a crossover point, then switch parent genes); see Crossover Functions

	Valid For

	any list-type gene

	Parameters

	n_crossover_points (int) – number of points at which to switch to the next parent gene (should be at least len(parent_genes) - 1)

	Returns

	a function that accepts a list of parent genes and applies point crossover

	Raises

	ValueError – if n_crossover_points is negative

	Dependencies:

	
	select_random()

	
holland.library.crossover_functions.get_and_crossover_function()

	Returns a function that reduces the values of the parent_genes by the logical ‘and’ operation; see Crossover Functions

	Valid For

	"bool" and "[bool]" gene types

	Returns

	a function that accepts a list of parent genes and applies ‘and’ crossover

	
holland.library.crossover_functions.get_or_crossover_function()

	Returns a function that reduces the values of the parent_genes by the logical ‘or’ operation; see Crossover Functions

	Valid For

	"bool" and "[bool]" gene types

	Returns

	a function that accepts a list of parent genes and applies ‘or’ crossover

mutation functions

Mutation functions are used by probabilistically_apply_mutation() to apply mutation to a gene value. The following functions return stock mutation functions, some with configurable parameters. See Mutation Functions for general information.

General Example:

import random

mutate = get_some_mutation_function()
genome = {"gene1": [123.8, 118.2, 103.0], "gene2": [1.5, 3.7, 2.6, 1.9]}
mutation_rate = 0.01

mutated_genome = {}
for gene_name, gene in genome:
 mutated_gene = [
 mutate(value) if random.random() < mutation_rate else value # apply probabilistically
 for value in gene
]
 mutated_genome[gene_name] = mutated_gene

	
holland.library.mutation_functions.get_flip_mutation_function()

	Returns a function that returns the negated value of the input, where the input is a boolean value; see Mutation Functions

	Valid For

	"bool" and "[bool]" gene types

	Returns

	a function that returns the negated value if its input

	
holland.library.mutation_functions.get_boundary_mutation_function(minimum, maximum)

	Returns a function that pushes a value to either the minimum or maximum allowed value for a gene; see Mutation Functions

	Valid For

	"int", "[int]", "float", and "[float]" gene types

	Parameters

	
	minimum (int/float) – the minimum allowed value

	maximum (int/float) – the maximum allowed value

	Returns

	either minimum or maximum (equally likely)

	
holland.library.mutation_functions.get_uniform_mutation_function(minimum, maximum)

	Returns a function that returns a value drawn from a uniform distribution over the closed interval [minimum, maximum]; see Mutation Functions

	Valid For

	any gene type

	Parameters

	
	minimum (int/float) – the minimum allowed value

	maximum (int/float) – the maximum allowed value

	Returns

	a sample from a uniform distribution

	
holland.library.mutation_functions.get_gaussian_mutation_function(sigma)

	Returns a function that returns a value drawn from a gaussian (normal) distribution with mean equal to value and standard_deviation equal to sigma; see Mutation Functions

	Valid For

	"int", "[int]", "float", and "[float]" gene types

	Parameters

	sigma (int/float) – standard deviation for the gaussian distribution

	Returns

	a sample from a gaussian distribution

Storage

storage manager

	
class holland.storage.StorageManager(fitness_storage_options={}, genome_storage_options={})

	Handles recording fitness statistics and genomes.

	Parameters

	
	fitness_storage_options (dict) – options for storing fitness statistics; see Fitness Storage Options

	genome_storage_options (dict) – options for storing genomes and their fitness scores; see Genome Storage Options

	
update_storage(generation_num, fitness_results)

	Updates storage of fitness scores and genomes (with fitness scores) when called; Decisions for whether to record or not are handled by dependencies

	Parameters

	
	generation_num (int) – the generation number of the population that generated the fitness_results

	fitness_results (list) – the results of a round of evaluation (returned by evaluate_fitness())

	Returns

	None

	Dependencies:

	
	update_fitness_storage()

	update_genome_storage()

	
react_to_interruption(generation_num, fitness_results)

	Updates storage of genomes (with fitness scores) in the event of an interruption during execution if genome_storage_options["should_record_on_interrupt"] is set to True

	Parameters

	
	generation_num (int) – the generation number of the population that generated the fitness_results

	fitness_results (list) – the results of a round of evaluation (returned by evaluate_fitness())

	Returns

	None

	Dependencies:

	
	record_genomes_and_fitnesses()

	
update_fitness_storage(generation_num, fitness_results)

	Updates storage of fitness scores if fitness_storage_options["should_record_fitness"] is set to True

	Parameters

	
	generation_num (int) – the generation number of the population that generated the fitness_results

	fitness_results (list) – the results of a round of evaluation (returned by evaluate_fitness())

	Returns

	None

	Dependencies:

	
	record_fitness()

	
update_genome_storage(generation_num, fitness_results)

	Updates storage of genomes (with fitness scores) if genome_storage_options["should_record_genomes"] is set to True and the generation_num matches the recording frequency

	Parameters

	
	generation_num (int) – the generation number of the population that generated the fitness_results

	fitness_results (list) – the results of a round of evaluation (returned by evaluate_fitness())

	Returns

	None

	Dependencies:

	
	should_record_genomes_now()

	record_genomes_and_fitnesses()

	
should_record_genomes_now(current_generation_num)

	Returns a boolean telling whether genomes should be recorded for the current_generation_num or not; Returns True if genome_storage_options["should_record_genomes"] is set to True and the generation_num matches the recording frequency, otherwise False

	Parameters

	generation_num (int) – the generation number of the population that generated the fitness_scores

	Returns

	a boolean telling whether or not genomes should be recorded

fitness

	
holland.storage.fitness.record_fitness(generation_num, fitness_scores, **storage_options)

	Records fitness statistics for a generation to a file and returns fitness statistics

	Parameters

	
	generation_num (int) – the generation number of the population that generated the fitness_scores

	fitness_scores (list) – the fitness scores of the generation

	storage_options (dict) – options for storing statistics, specifically file_name, format, and path are relevant; see Fitness Storage Options

	Returns

	a dictionary of statistics for the fitness scores

	Dependencies:

	
	format_fitness_statistics()

	
holland.storage.fitness.format_fitness_statistics(generation_num, fitness_scores)

	Generate statistics on fitness scores for a generation

	Parameters

	
	generation_num (int) – the generation number of the population that generated the fitness_scores

	fitness_scores (list) – the fitness scores of the generation

	Returns

	a dictionary of statistics for the fitness scores

genomes and fitnesses

	
holland.storage.genomes_and_fitnesses.record_genomes_and_fitnesses(generation_num, fitness_results, **storage_options)

	Records results of a round of evaluation

	Parameters

	
	generation_num (int) – the generation number of the population that generated the fitness_scores

	fitness_results (list) – the results of a round of evaluation (returned by evaluate_fitness())

	storage_options (dict) – options for selecting which results to store and how to store them, specifically should_add_generation_suffix, format, file_name, path, top, mid, bottom are relevant; see Genome Storage Options

	Returns

	None

	Dependencies:

	
	format_genomes_and_fitnesses_for_storage()

	
holland.storage.genomes_and_fitnesses.format_genomes_and_fitnesses_for_storage(generation_num, fitness_results, **storage_options)

	Formats results of a round of evaluation for storage

	Parameters

	
	generation_num (int) – the generation number of the results

	fitness_results (list) – the sorted results of a round of evaluation (returned by evaluate_fitness)

	storage_options (dict) – options for selecting which results to store, specifically top, mid, bottom are relevant; see Genome Storage Options

	Returns

	a dictionary of the form {"generation": generation_num, "results": selected_results}

Note

For the sake of efficiency, this method expects fitness_results to be sorted in order to properly select genomes on the basis of fitness. evaluate_fitness() returns sorted results.

	Dependencies:

	
	select_from()

utils

	
holland.storage.utils.record(data, **storage_options)

	Records data to a file

	Parameters

	
	data (list/dict) – the data to write to the file

	storage_options (dict) – options for writing the data to a file, specifically format (options: 'json', 'csv'), file_name, and path are relevant; see Fitness Storage Options and Genome Storage Options

	Returns

	None

	Dependencies:

	
	record_to_csv()

	record_to_json()

	
holland.storage.utils.record_to_csv(data, **storage_options)

	Writes data to a file CSV format; appends a row to an existing file; a file is created if none exists yet

	Parameters

	
	data (dict) – the data to write to the file (with column names as keys)

	storage_options (dict) – options for writing the data to a file, specifically file_name and path are relevant; see Fitness Storage Options and Genome Storage Options

	Returns

	None

	Raises

	
	AssertionError – if storage_options[“file_name”] is not specified

	AssertionError – if storage_options[“path”] is not specified

	ValueError – if not all values are of type int or float

	
holland.storage.utils.record_to_json(data, **storage_options)

	Writes data to a file JSON format; overwrites contents if the file already exists

	Parameters

	
	data (list/dict) – the data to write to the file (must be valid JSON format)

	storage_options (dict) – options for writing the data to a file, specifically file_name and path are relevant; see Fitness Storage Options and Genome Storage Options

	Returns

	None

	Raises

	
	AssertionError – if storage_options[“file_name”] is not specified

	AssertionError – if storage_options[“path”] is not specified

Utils

utility functions

	
holland.utils.utils.bound_value(value, minimum=-inf, maximum=inf, to_int=False)

	Bounds a value between a minimum and maximum

	Parameters

	
	value (int/float) – the value to bound

	minimum (int/float) – the lower bound

	maximum (int/float) – the upper bound

	to_int (bool) – whether or not to cast the result to an int

	Returns

	the bounded value

	
holland.utils.utils.select_from(values, top=0, mid=0, bottom=0, random=0)

	Selects elements from a (sorted) list without replacement

	Parameters

	
	values (list) – the list of values to select from

	top (int) – number of elements to select from the top (end) of the list

	mid (int) – number of elements to select from the middle of the list

	bottom (int) – number of elements to select from the bottom (start) of the list

	random (int) – number of elements to select randomly from the list

	Returns

	a list of selected elements

	
holland.utils.utils.select_random(choices, probabilities=None, n=1, should_replace=False)

	Selects random elements from a list

	Parameters

	
	choices (list) – list of elements to select from

	probabilities (list) – list of probabilities for selecting each element in choices; if not specified, uniform probability is used

	n (int) – number of elements to select from choices

	should_replace (bool) – specifies if selection should be done with replacement or not

	Returns

	a list of length n of elements selected randomly from choices

	Raises

	
	ValueError – if probabilities is given but len(probabilities) != len(choices)

	ValueError – if any element of probabilities is negative

	ValueError – if sum(probabilities) > 1

	ValueError – if should_replace is False but n > len(choices)

	
holland.utils.utils.is_numeric_type(gene_params)

	Determines if a gene is of a numeric type or not (whether list type or not); e.g. returns False if type is "bool" or "[bool]", but True if type is "float" or "[float]"

	Parameters

	gene_params (dict) – a dictionary of parameters for a single gene; see Genome Parameters

	Returns

	a boolean indiciating whether the gene is of a numeric type or not

	
holland.utils.utils.is_list_type(gene_params)

	Determines if a gene is of a list type or not; e.g. returns False if type is "float" but True if type is "[float]"

	Parameters

	gene_params (dict) – a dictionary of parameters for a single gene; see Genome Parameters

	Returns

	a boolean indicating whether the gene is of a list type or not

Configuration

This page provides information on configuring Holland, specifically initializing the Evolver class and using its evolve() method.

	Fitness Function

	Genome Parameters

	Crossover Functions

	Mutation Functions

	Selection Strategy

	Generation Parameters

	Fitness Storage Options

	Genome Storage Options

Fitness Function

The fitness function is a user-written function that maps genomes to fitness scores, which in turn, are used in breeding the next generation. A fitness function must accept a single genome and must return either:

	an integer or float corresponding to the fitness of the given genome (Darwinian Evolution); or

	a tuple/list with the fitness score in the first position and a modified genome in the second (Lamarckian Evolution).

See evaluate_fitness() for details on how the fitness function is used.

Holland is designed to be application-agnostic, so a fitness function can evaluate a genome in any way so long as the input and output match what is expected. A fitness function might simply plug in different values from a genome’s genes into a formula or it might create an instance of some class according to the parameters specified in the genome and then run a simulation for that individual.

	Example:

	def darwinian_fitness_function(genome):
 """Evaluates an ImageClassifier instance (that uses a neural network with weight vectors w1 and w2)"""
 individual = ImageClassifier(w1=genome["w1"], w2=genome["w2"])
 fitness = 0

 for label, image in labeled_images:
 classification = individual.classify(image)
 if classification == label:
 fitness += 100

 return fitness

def lamarckian_fitness_function(genome):
 """Evaluates an ImageClassifier instance (that uses a neural network with weight vectors w1 and w2)"""
 individual = ImageClassifier(w1=genome["w1"], w2=genome["w2"])
 fitness = 0

 for label, image in labeled_images:
 classification = individual.classify(image)
 if classification == label:
 fitness += 100
 else:
 individual.back_propagate()

 final_genome = individual.get_weights()

 return fitness, final_genome

Genome Parameters

In order to generate initial and random genomes, perform crossover on genomes, and mutate genomes, genome_params are required to be specifed. The structure of genomes for populates are determined by these parameters. genome_params is a dictionary whose keys correspond to individual genes, where the dictionary contained at each key specifies parameters for that gene.

Each gene must have a specified type. There are two broad categories of gene types: list-types and value-types. List-type genes are lists of a set length and containing only elements of a single type. Value-type genes are single values. List-type genes use the notation "[type]" while value-type genes use the notation "type".

This is an example of genome_params:

{
 "gene1": {
 "type": "int",
 "max": 100000,
 "min": -100000,
 "initial_distribution": lambda: random.uniform(-100000, 100000),
 "crossover_function": get_uniform_crossover_function(),
 "mutation_function": get_gaussian_mutation_function(100),
 "mutation_rate": 0.01
 },
 "gene2": {
 "type": "[float]",
 "size": 100,
 "max": 100000,
 "min": -100000,
 "initial_distribution": lambda: random.uniform(-100000, 100000),
 "crossover_function": get_point_crossover_function(n_crossover_points=3),
 "mutation_function": get_gaussian_mutation_function(100),
 "mutation_rate": 0.01
 },
 "gene3": {
 "type": "bool",
 "initial_distribution": lambda: random.random() < 0.5,
 "crossover_function": get_uniform_crossover_function(),
 "mutation_function": get_flip_mutation_function(),
 "mutation_rate": 0.05
 },
 "gene4": {
 "type": "[str]",
 "size": 5,
 "initial_distribution": lambda: random.sample(list_of_words, 1)[0],
 "crossover_function": get_uniform_crossover_function(),
 "mutation_function": rotate_order,
 "mutation_level": "gene",
 "mutation_rate": 0.05
 }
}

The significance of these values is as follows:

	type (str) – specifies the type of the gene; if the gene is just a single value, use the plain type, but if the gene is a list of values, use the type in brackets; options:

	"float", "[float]"

	"int", "[int]"

	"bool", "[bool]"

	"str", "[str]"

	size (int) – specifies the length of the gene if list-type

	max (int/float) – specifies the maximum allowed value for the gene or any element of the gene if of a numeric type

	min (int/float) – specifies the minimum allowed value for the gene or any element of the gene if of a numeric type

	initial_distribution (func) – a function for initializing a random gene with values; must not accept any positional arguments

	crossover_function (func) – a function to cross multiple parent genes; see Crossover Functions for more

	mutation_function (func) – a function that mutates either the whole gene or a single value of the gene (depending on mutation_level); see Mutation Functions for more

	mutation_level (str) – specifies how to apply the mutation_funtion: either to the gene as a whole, or just individual values; default is "value" (options: "value", "gene"); irrelevant for value-type genes

	mutation_rate (int/float) – probability (0 to 1) that each value of the gene gets mutated (by applying the mutation_function)

Crossover Functions

Crossover functions are used to splice parent genes together to form a gene for an offspring. Crossover functions can be custom made, but Holland offers a few common crossover functions built in, these are described in the crossover functions subsection of Library. If you write or find a novel crossover function that you find useful, consider contributing it to the Holland library!

Crossover functions act on, and are specified for, individual genes, rather than entire genomes. Since Holland supports reproduction between an arbitrary number of individuals (parents) crossover functions must accept a single argument: a list containing parent gene(s). The length of this list is determined by the number of parents as specified in the selection_strategy (see Selection Strategy). Crossover functions must return a single gene.

	Example:

	def crossover(parent_genes):
 """Take each value by alternating between parent genes"""
 num_parents = len(parent_genes)
 gene_length = len(parent_genes[0])
 return [parent_genes[i % num_parents][i] for i in range(gene_length)]

Mutation Functions

Mutation functions are used to modify gene values. Like Crossover Functions, mutation functions can be custom made, but Holland offers a few common mutation functions built in, these are described in the mutation functions subsection of Library. If you write or find a novel mutation function that you find useful, consider contributing it to the Holland library!

Mutation functions can act on either individual values of a gene or an entire gene, but not the whole genome. Mutation functions are specified for each gene. To have a mutation function applied to a whole gene (when the gene is a list-type), the option "mutation_level" should be set to "gene" instead of "value" (see Genome Parameters for more detail); for value-type genes this distinction does not matter. For most applications of the Genetic Algorithm a "mutation_level" of "value" should be appropriate, but some applications—e.g. Travelling Salesman—require mutations be applied at the gene level.

A mutation function is applied probabilistically (by probabilistically_apply_mutation()), and, therefore, need not consider the mutation_rate of the gene. Mutation functions must return the mutated value or gene.

	Example:

	import random

def mutate_value(value):
 """Randomly doubles or halves a value -- applied at "value" level"""
 if random.random() < 0.5:
 return value * 2
 return value / 2

def mutate_gene(gene):
 """Shuffle a gene -- applied at "gene" level"""
 random.shuffle(gene)
 return gene

Selection Strategy

The selection strategy for breeding the next generation of indviduals is specified in the selection_strategy dictionary. The strategy is ultimately used by the functions select_breeding_pool(), which uses information contained in the "pool" section of the selection strategy, and select_parents(), which uses information contained in "parents".

The fitness weighting function determines how to weight fitness scores in order to translate into probabilities for selection of a genome as a parent for an individual in the next generation. For cases in which fitness is sought to be maximized, an increasing fitness weighting function should be used, whereas cases in which fitness should be minimized (e.g. fitness represents error) should employ a decreasing fitness weighting function. In both cases a uniform weighting function will suffice. In the case of minimizing fitness, a reciprocal weighting function, linear weighting function with negative slope, or polynomial weighting function with negative power will work. See fitness weighting functions for stock fitness weighting functions.

The dictionary selection_strategy should have the below form. The example values shown here are the defaults and any parameters that are not specified will use these values as defaults:

{
 "pool": {
 "top": 0,
 "mid": 0,
 "bottom": 0,
 "random": 0
 },
 "parents": {
 "weighting_function": lambda x: 1,
 "n_parents": 2
 }
}

The significance of these values is as follows:

	
	pool

	
	top (int) – number of genomes to select from the top (end) of the pack (by fitness)

	mid (int) – number of genomes to select from the middle of the pack (by fitness)

	bottom (int) – number of genomes to select from the bottom (start) of the pack (by fitness)

	random (int) – number of genomes to select at random

	
	parents

	
	weighting_function (func) – function for converting a fitness score into a probability for selecting an individual as a parent (default is uniform weighting); higher weights indicate a higher probability of being selected

	n_parents (int) – number of parents to select for each offspring

Note

It is recommended that the weighting_function return only positive values. While Holland can handle weighting functions that return negative values, this presents an ambiguous case in terms of converting weighted scores to probabilities. Current handling of this case aims to minimally distort probabilities, but results may not be exactly what you expect.

Generation Parameters

When creating the population for the next generation, a few optional parameters can be set:

	n_random (int) – number of fully random genomes to introduce to the population in each generation

	n_elite (int) – number of (most fit) genomes to preserve for the next generation

	population_size (int) – size of the population in each generation (required if an initial population is not given)

These values should be placed in the generation_params dictionary.

Fitness Storage Options

To measure performance improvements over the generations, fitness statistics can be stored for each generation. If enabled, the statistics recorde are max, min, mean, median, and standard deviation. Values can be stored either to a file (csv) or in memory and returned by evolve(). By default fitness statistics are not recorded.

The following options are available:

	should_record_fitness (bool) – determines whether or not to record fitness

	format (str) – file format (options: ‘csv’, ‘memory’); if ‘memory’, stats are returned as second element of tuple in evolve()

	file_name (str) – name of the file to write to

	path (str) – location of the file to write

See the fitness subsection of Storage for more on how these values are used.

Genome Storage Options

To record snapshots of the population over the generations genomes and their corresponding fitness scores (in the same format returned by evaluate_fitness()) can be recorded. If enabled, individuals will be selected according to the specified strategy and stored to a file (json). Additionally, by setting should_record_on_interrupt to True (which is independent of the value of should_record_genomes), genomes will be recorded if an unhandled exception is thrown during execution. By default genomes are not recorded.

The following options are available:

	should_record_genomes (bool) – determines wether or not to record genomes at all

	record_every_n_generations (int) – recording frequency

	should_record_on_interrupt (bool) – determines wether or not to record genomes if an unhandled exception (including KeyboardInterrupt) is raised

	format (str) – file format (options: ‘json’)

	file_name (str) – name of the file to write to

	path (str) – location of the file to write

	should_add_generation_suffix (bool) – determines whether or not to append ‘-generation_{n}’ to the end of file_name

	top (int) – number of genomes and scores to select from the top of the pack (by fitness)

	mid (int) – number of genomes and scores to select from the middle of the pack (by fitness)

	bottom (int) – number of genomes and scores to select from the bottom of the pack (by fitness)

See the genomes and fitnesses subsection of Storage for more on how these values are used.

Contributing

	Reporting Bugs

	Contribution Guide

	Style Guide

Reporting Bugs

If you encouter a bug, please open an issue on our github page [https://www.github.com/henrywoody].

Contribution Guide

To contribute a new feature, please fork our repository [https://www.github.com/henrywoody] and submit a pull request.

Style Guide

General Code Style

All code should be written in python and formatted with black [https://github.com/ambv/black/].

Updating or Writing Methods

When updating methods, make sure to update the Dependencies list.

Updating Examples

When updating an example, use grep to make sure all references are updated if necessary. e.g. updating lines of highlighted code

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 holland	

 	
 	
 holland.library.crossover_functions	

 	
 	
 holland.library.fitness_weighting_functions	

 	
 	
 holland.library.mutation_functions	

 	
 	
 holland.storage.fitness	

 	
 	
 holland.storage.genomes_and_fitnesses	

 	
 	
 holland.storage.utils	

 	
 	
 holland.utils.utils	

Index

 B
 | C
 | E
 | F
 | G
 | H
 | I
 | M
 | P
 | R
 | S
 | U

B

 	
 	bound_value() (in module holland.utils.utils)

 	
 	breed_next_generation() (holland.evolution.PopulationGenerator method)

C

 	
 	cross_genomes() (holland.evolution.Crosser method)

 	
 	Crosser (class in holland.evolution)

E

 	
 	evaluate_fitness() (holland.evolution.Evaluator method)

 	Evaluator (class in holland.evolution)

 	
 	evolve() (holland.evolution.Evolver method)

 	Evolver (class in holland.evolution)

F

 	
 	format_fitness_statistics() (in module holland.storage.fitness)

 	
 	format_genomes_and_fitnesses_for_storage() (in module holland.storage.genomes_and_fitnesses)

G

 	
 	generate_next_generation() (holland.evolution.PopulationGenerator method)

 	generate_random_genomes() (holland.evolution.PopulationGenerator method)

 	get_and_crossover_function() (in module holland.library.crossover_functions)

 	get_boundary_mutation_function() (in module holland.library.mutation_functions)

 	get_exponential_weighting_function() (in module holland.library.fitness_weighting_functions)

 	get_flip_mutation_function() (in module holland.library.mutation_functions)

 	get_gaussian_mutation_function() (in module holland.library.mutation_functions)

 	get_linear_weighting_function() (in module holland.library.fitness_weighting_functions)

 	
 	get_logarithmic_weighting_function() (in module holland.library.fitness_weighting_functions)

 	get_or_crossover_function() (in module holland.library.crossover_functions)

 	get_point_crossover_function() (in module holland.library.crossover_functions)

 	get_polynomial_weighting_function() (in module holland.library.fitness_weighting_functions)

 	get_reciprocal_weighting_function() (in module holland.library.fitness_weighting_functions)

 	get_uniform_crossover_function() (in module holland.library.crossover_functions)

 	get_uniform_mutation_function() (in module holland.library.mutation_functions)

 	get_uniform_weighting_function() (in module holland.library.fitness_weighting_functions)

H

 	
 	holland.library.crossover_functions (module)

 	holland.library.fitness_weighting_functions (module)

 	holland.library.mutation_functions (module)

 	
 	holland.storage.fitness (module)

 	holland.storage.genomes_and_fitnesses (module)

 	holland.storage.utils (module)

 	holland.utils.utils (module)

I

 	
 	is_list_type() (in module holland.utils.utils)

 	
 	is_numeric_type() (in module holland.utils.utils)

M

 	
 	mutate_gene() (holland.evolution.Mutator method)

 	
 	mutate_genome() (holland.evolution.Mutator method)

 	Mutator (class in holland.evolution)

P

 	
 	PopulationGenerator (class in holland.evolution)

 	
 	probabilistically_apply_mutation() (holland.evolution.Mutator method)

R

 	
 	react_to_interruption() (holland.storage.StorageManager method)

 	record() (in module holland.storage.utils)

 	record_fitness() (in module holland.storage.fitness)

 	
 	record_genomes_and_fitnesses() (in module holland.storage.genomes_and_fitnesses)

 	record_to_csv() (in module holland.storage.utils)

 	record_to_json() (in module holland.storage.utils)

S

 	
 	select_breeding_pool() (holland.evolution.Selector method)

 	select_from() (in module holland.utils.utils)

 	select_parents() (holland.evolution.Selector method)

 	
 	select_random() (in module holland.utils.utils)

 	Selector (class in holland.evolution)

 	should_record_genomes_now() (holland.storage.StorageManager method)

 	StorageManager (class in holland.storage)

U

 	
 	update_fitness_storage() (holland.storage.StorageManager method)

 	
 	update_genome_storage() (holland.storage.StorageManager method)

 	update_storage() (holland.storage.StorageManager method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Holland Documentation

 		
 Basic Usage

 		
 First example

 		
 Intermediate Example: TSP

 		
 Holland Reference

 		
 Evolution

 		
 evolution

 		
 evaluation

 		
 breeding

 		
 selection

 		
 crossover

 		
 mutation

 		
 Library

 		
 fitness weighting functions

 		
 crossover functions

 		
 mutation functions

 		
 Storage

 		
 storage manager

 		
 fitness

 		
 genomes and fitnesses

 		
 utils

 		
 Utils

 		
 utility functions

 		
 Configuration

 		
 Fitness Function

 		
 Genome Parameters

 		
 Crossover Functions

 		
 Mutation Functions

 		
 Selection Strategy

 		
 Generation Parameters

 		
 Fitness Storage Options

 		
 Genome Storage Options

 		
 Contributing

 		
 Reporting Bugs

 		
 Contribution Guide

 		
 Style Guide

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

